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Abstract. We study a model of a bosonic string in a specific antisymmetric background. It
is shown that the action in the conformal gauge possesses the same residualw∞ symmetry as
that for the ordinary bosonic string. Static solutions to the classical equations of motion are
found for arbitrary space–time dimension and for arbitrary orientation of the string, and the
static potential in the semiclassical (quadratic) approximation is derived. It is shown that the
quasi-static picture breaks down beyond some critical distance which depends on the orientation
of the string.

1. Introduction

Strings in non-trivial backgrounds have been studied extensively in the last decade. The
background fields are vacuum expectation values for the massless string excitations [1, 2],
which in a compatible theory have to satisfy the corresponding equations of motion. These
equations turn out to be equivalent [3, 4] to consistency conditions which guarantee the
conformal invariance of the (first quantized) string theory.

Symmetries of superstrings in highly non-trivial backgrounds play an important role in
the attempt to derive a realistic low-energy effective action (see, e.g., [5]).

In the present paper we consider a bosonic string model [6] in space–time with flat
(Euclidean) metric and constant torsion. The topological term in the action [6] contains
the torsion potential (an antisymmetric tensor) which is chosen to be invariant (up to
gauge transformations) with respect to space–time rotations when the space–time is three
dimensional. In the general case (d > 3) the topological term breaks down the rotational
invariance and picks up a three-dimensional subspace. It has been proved [7] that such a
model is equivalent to aWO(p, q) gravity if the number of the space–time dimensions is
p + q = 3, 4. The model can be considered as a generalization of the Narain–Sarmadi–
Witten model [8] (see also [9]). We will show that in a conformal gauge the model admits
(at the classical level) a residual infinite-dimensionalw∞ symmetry. There is, however, a
conformal anomaly [10] in the quantized theory. Let us note that the critical dimension
(d = 26) is not affected by the inclusion of the topological term in the action. Indeed, the
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unrenormalized effective action [4] contains some additional divergences in the presence of
the topological term. They have to be compensated, however, by renormalization of the
target-space metric and the torsion potential. As a result the topological term contributes
(at the one-loop level) to the beta functions [3, 4] corresponding to these background fields
[11] but does not contribute to the dilaton beta function. We also note that all three beta
functions cannot vanish simultaneously in the model under consideration for any number
of space–time dimensions—the particular background does not match the conditions of
conformal invariance [3, 4]. It does not, therefore, correspond to a true string vacuum—the
ground state is expected to be unstable (at least for a closed string).

We derive an expression for the one-loop correction to the ground-state energy (static
potential) for an open string with fixed ends in space–time of arbitrary dimensionD. Static
solutions are found for arbitrary string orientation with respect to the three-dimensional
subspace, distinguished by the topological term in the action, and the effect of quantum
fluctuations is evaluated. We also discuss the (in)stability of the closed static solutions.

The paper is organized as follows. In section 2 symmetries of the model are discussed.
The static solutions to the classical equations of motion are studied in section 3. In section 4
an expression is derived for the static potential. The (in)stability of the closed static solutions
is discussed in section 5 and some concluding remarks are given in section 6.

2. A string with a topological term

Let us consider a string action written as a sum

S = SNG + SWZ (2.1)

of the Nambu–Goto action for a bosonic string in Euclidean space–timeED of dimensionD

SNG = κ

∫
d2ξ

√
g (2.2)

and a trivial Wess–Zumino term

SWZ = −1

2

∫
d2ξ εabBµν(X(ξ))∂aX

µ∂bX
ν. (2.3)

Here Xµ (µ = 0, 1, ..., D − 1) are coordinates forED, ξa (a = 0, 1) are coordinates for
the world sheet,g is the determinant of the induced metric tensor:

g = detgab gab = ∂Xµ

∂ξa

∂Xµ

∂ξb
(2.4)

andB is an antisymmetric tensor field. The termSWZ is similar to the interaction term for
a particle in an electromagnetic field [12, 13]. The string dynamics is invariant under gauge
transformations

Bµν → Bµν + ∂µ3ν − ∂ν3µ (2.5)

where3µ are the coefficients of an arbitrary 1-form onED. The gauge invariant quantity

Hλµν = ∂λBµν + ∂νBλµ + ∂µBνλ (2.6)

is analogous to the Maxwell tensor.
As is well known,SNG is invariant under the isometries ofED. In generalSWZ breaks

down this symmetry. An antisymmetric tensor fieldHλµν respecting the isometries ofED

exists forD = 3. The corresponding string model forD = 3 has already been discussed
[6, 14]. In the general caseD > 3, which we are going to consider, any non-zero tensor
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field Hλµν breaks the rotational invariance. We choose a background fieldB which, in our
reference frame, is given by

Bµν = κ̃

2∑
α=0

εαµνX
α µ, ν = 0, 1, 2

Bµν = 0 µ or ν > 2

(2.7)

ε being the Levi-Civita symbol,ε012 = 1. The corresponding fieldHλµν (which is a
tensor field in theD-dimensional space–timeED) is invariant under rotations belonging to
a subgroupSO(3) ⊗ SO(D − 3) of SO(D). This field is invariant under translations of
ED as well. The action of a string in the background (2.7) is written as

S =
∫

d2ξ

(
κ
√

g − κ̃

2
εabεαβγ Xα∂aX

β∂bX
γ

)
. (2.8)

It is invariant (generally, up to a surface term) with respect to the same transformations.
Calculating the canonical momenta one finds the constraints [6]

8 = PX,1 ≈ 0

8⊥ = P 2 − κ2X2
,1 + 2κ̃εαβγ P αXβX

γ

,1 + κ̃2(X̃2X̃2
,1 − (X̃X̃,1)

2) ≈ 0.

(2.9)

Here

Pα = κ
√

gg0bXα,b − κ̃εαβγ XβX
γ

,1 α = 0, 1, 2

Pj = κ
√

gg0bXj,b j = 3, . . . , D − 1
(2.10)

are the canonical momenta conjugate toXµ and the notationXY = ∑D−1
µ=0 XµYµ,

X̃Ỹ = ∑2
α=0X

αYα is used. Notice that although the first three components of the canonical
momentum differ by the corresponding momentum in standard bosonic string theory, the
constraints (2.9) satisfy the same Virasoro algebra. We will show that the Virasoro algebra
also appears as a Lie algebra of symmetry transformations of the Lagrangian in the conformal
gauge. Moreover, the action admits an extended higher spinw-symmetry than that for the
ordinary string. Another property of the ordinary string theory which is preserved here is
that the canonical Hamiltonian vanishes identically.

We turn to the residual symmetry of the action (2.8) in a conformal gauge:

S =
∫

d2ξ (κ
√

g + κ̃εαβγ XαX
β

,0X
γ

,1). (2.11)

We recall that the first term in this action admitsw∞-symmetry. We will show that the Wess–
Zumino term also allows this symmetry. Indeed, let us consider the following transformation
law [15]:

δn
(k)X

µ = k(ξ+)dµρ1...ρn+1∂+Xρ1 · · · ∂+Xρn+1 n = 0, 1, 2, . . . (2.12)

where k(ξ+) is an arbitrary function of one of the light-cone variablesξ± = 1
2(ξ0 ± ξ1)

and d is a symmetric tensor. It is easy to check the symmetry of the action (2.11) under
transformations (2.12) up to a surface term. The transformations satisfy thew∞-algebra
which reads [

δm
(k), δ

n
(h)

] = δm+n
((m+1)k∂h−(m+1)h∂k). (2.13)

The conserved currents corresponding to the transformations (2.12) read

V n = 1

2 + n
dµ1...µn+2X

µ1
,+ · · ·Xµn+2

,+ . (2.14)
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In the casen = 0, dµν = δµν the first current is written as

V 0 = T++ = 1
2X

µ
,+X

µ
,+ (2.15)

i.e. it coincides with the(++)-component of the stress–energy tensor being the generator of
the conformal transformations. Notice that the conserved quantities (2.14) satisfy the current
algebra which concurs with the Lie algebra of the infinitesimal transformations (2.13).
Taking into account that the Weyl symmetry is also preserved for the action (2.8), it can
be concluded that this action possesses the same symmetries as the ordinary bosonic string
action.

3. Static solutions

We are going to describe the static solutions to the classical equations of motion for a string
with action (2.11). These equations are written as

κ∂a(
√

ggab∂bXα) − 3κ̃εαβγ X
β

,0X
γ

,1 = 0 α = 0, 1, 2 (3.1a)

κ∂a(
√

ggab∂bXj ) = 0 j = 3, . . . , D − 1. (3.1b)

We note that for any right-movingXα (∂+Xα = 0) or for a left-moving one (∂−Xα = 0)
the second term on theRHS of (3.1a) vanishes; hence they satisfy both equations (3.1).
However, a linear combination of right- and left-moving functions would not, in general,
be a solution to (3.1a), in contrast to the cases of ordinary bosonic string or bosonic string
in [16, 9].

In order to obtain new non-trivial solutions we turn to the following property of
equations (3.1a): the antisymmetric background field (2.7) depends onX0 but the
corresponding gauge invariant tensorHλµν does not (moreover, it is constant). Making
a gauge transformation (2.5) with

3α = 1
2 κ̃ε0αβXβ α = 0, 1, 2 (3.2)

(all other components of3 vanish) one obtains a static (i.e.X0-independent) background
field which is equivalent to that given by (2.7). The corresponding action is written as

S̃ = κ

∫
d2ξ

{
g

1
2 + λ

2

(
X2(∂0X

0∂1X
1 − ∂0X

1∂1X
0) − X1(∂0X

0∂2X
2 − ∂0X

2∂2X
0)

)}
(3.3)

where

λ = 3
κ̃

κ
. (3.4)

We shall use the action (3.3) instead of (2.11) when discussing the static potential
produced by the string.

Due to the invariance of the action (3.2) under world-sheet reparametrizations the
solutions to (3.1) are not completely determined by any boundary conditions and gauge
fixing is necessary. For obvious reasons the conformal gauge is not convenient in the study
of static configurations.

We choose parametersξ0 ≡ τ andξ1 ≡ η on the world-sheet such that

χ0{X; τ, η} ≡ X0(τ, η) − τ = 0. (3.5)

Under this condition (which fixes the gauge partially) the action (3.3) is written as

S̃ = κ

∫
d2ξ

(
g

1
2 + λ

2
(X2∂ηX

1 − X1∂ηX
2)

)
(3.6)
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where

g = det

(
1 + ∂τX · ∂τX ∂τX · ∂ηX

∂τX · ∂ηX ∂ηX · ∂ηX

)
(3.7)

andX = (X1, X2, . . . , XD−1). For the static configurations{X0 = τ, X = X(τ, η)} the
equations of motion (3.2) read

∂η((∂ηX · ∂ηX)−
1
2 ∂ηX1) + λ∂ηX2 = 0

∂η((∂ηX · ∂ηX)−
1
2 ∂ηX2) − λ∂ηX1 = 0

∂η((∂ηX · ∂ηX)−
1
2 ∂ηXj ) = 0 j = 3, 4, . . . , D − 1.

(3.8)

Equations (3.8) are invariant under reparametrizationsδτ = 0, δη = ε(η). A solution can
be written as

Xcl
1 (η) = a

λ

(
cos

(
λ

∫ η

0
f (s) ds

)
− 1

)

Xcl
2 (η) = a

λ
sin

(
λ

∫ η

0
f (s) ds

)

Xcl
3 (η) = b

∫ η

0
f (s) ds

Xcl
k (η) = 0 k = 4, . . . , D − 1

(3.9)

where 06 η 6 2, a2 + b2 = 1 andf is a positive function. The solution (3.9) is chosen
to satisfy the initial conditions

X(0) = 0 (3.10a)

d

dη
X = (0, af (0), bf (0), 0, . . . , 0) . (3.10b)

It is natural to introduce

a = sinφ b = cosφ 0 6 φ 6 2π. (3.11)

However, for brevity we also keep the notationa, b. Any solution to equations (3.8) can
be cast in the form (3.9) by an appropriate space rotation and translation.

A convenient gauge-fixing condition in the vicinity of the solution (3.9) is

χ1[X; τ, η] ≡ α[X; τ, η] − η = 0 (3.12)

where

α[X; τ, η] =
∫ η

0

(X1(τ, s) + a/λ) ∂sX2(τ, s) − X2(τ, s)∂sX1(τ, s)

(X1(τ, s) + a/λ)2 + X2
2(τ, s)

ds. (3.13)

The condition (3.12) is local becauseα is an integral of a closed 1-form. Imposing this
condition on a solution (3.9) (witha 6= 0) one findsf ≡ λ−1 and, consequently,

Xcl
1 (η) = a

λ
(cosη − 1) (3.14a)

Xcl
2 (η) = a

λ
sinη (3.14b)

Xcl
3 (η) = b

λ
η (3.14c)

Xcl
k (η) = 0 k = 4, . . . , D − 1 0 6 η 6 2. (3.14d)



1130 R P Zaikov and S I Zlatev

We will consider two types of solution: strings with fixed ends and closed strings. A closed
string solution is given by (3.14) whereb = 0 (a2 = 1) and2 = 2πN (N is the ‘winding
number’). The energy of a closed string solution is given by

Ecl
N = πκN

λ
. (3.15)

This quantity is invariant with respect to translations of the solution. The closed string
static solution of lowest non-zero energy is that withN = 1. We note that there are no
topological arguments for the stability of these solutions.

The energy of an open static classical string is written as

V cl(2) = κ

λ

(
1 + b2

2
2 + 1 − b2

2
sin2

)
. (3.16)

It is more instructive to use the distance between the ends of string

r = 1

λ

√
4a2 sin

2

2
+ b222, (3.17)

and the directional cosine

c = Xcl
3 (2)

r
(3.18)

as parameters for the solution instead of2 andφ. By using the expansions

2 = λr + 1 − c2

24
λ3r3 + O(λ5r5) (3.19a)

b = c

(
1 − 1 − c2

24
λ2r2 + O(λ4r4)

)
λr → 0 (3.19b)

we find

V cl = κr

(
1 + 1 − c2

24
λ2r2 + O(λ3)

)
λ → 0. (3.20)

4. Static potential

Let us consider a ‘Wilson loop’C in ED formed by the curves{X0 = 0, X = Xcl(η); 0 6
η 6 θ}, {X0 = τ, X = Xcl(θ); 0 6 τT }, {X0 = T , X = Xcl(η); 0 6 η 6 θ},
{X0 = τ, X = Xcl(0); 0 6 τ 6 T }. The average over the surfaces enclosed by the loop
[17] is written as

ψ(C) =
∫

D X δ(χ0) δ(χ1) 1 e−S̃ (4.1)

where the Faddeev–Popov determinant1 is a constant and will be omitted. One expects
the asymptotic behaviour

ψ(C) ∼ e−V T T → ∞ (4.2)

whereV can be identified as the ground-state energy of the system (the static potential in
the case of an open string which depends on the distance between the ends of the string
and its orientation).
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We perform the integration onX0 in (4.1) and make a change† of the integration
variablesX1, X2 (leaving the remaining variables unchanged):

X1(τ, η) = (2Y (τ, η))
1
2 cosϕ(τ, η) − a

λ

X2(τ, η) = (2Y (τ, η))
1
2 sinϕ(τ, η).

(4.3)

Using these new variables one replaces (3.14a) and (3.14b) by

Y cl = a2

2λ2
(4.4a)

ϕcl(η) = η. (4.4b)

The gauge-fixing condition (3.12) is written as

χ1 ≡ ϕ(τ, η) − η = 0 (4.5)

and the integration onϕ can be easily done yielding

ψ(C) =
∫

DY

D−1∏
k=3

DXk e−S(gf)
(4.6)

where

S(gf) = κ

∫ T

0
dτ

∫ θ

0
dη (

√
g − λY ) (4.7)

is the actionS̃ in the gauge specified by (3.5), (4.5). Usingκ−1/2 as a loop expansion
parameter we make a shift of the integration variables‡:

Y = Y cl + κ− 1
2 µ− 3

2 y

X3 = Xcl
3 + κ− 1

2 µ− 1
2 z3

Xk = κ− 1
2 µ− 1

2 zk k = 4, . . . , D − 1.

(4.8)

assuming zero boundary conditions ony, zk (k = 3, . . . , D − 1).
ExpandingS(gf) in powers ofκ

S(gf) = T V cl(2) + S(2) + O(κ) (4.9)

and changing the variablesy, z3:

y =
(µ

λ
a
)1/2

u z3 =
(µ

λ
a
)−1/2

v (4.10)

we rewrite the bilinear term in a more symmetric form:

S(2) = 1

2µ2

∫ T

0
dτ

∫ 2

0
dη

(
(∂τu)2 + λ2((∂ηu)2 − a2) + (∂τ v)2 + λ2(∂ηv)2

−λ2b

2
(u∂ηv − v∂ηu) + µ

λ

d−1∑
k=4

((∂ηzk)
2 + λ2(∂ηzk)

2)

)
. (4.11)

† The Jacobians of all the changes of variables which we make are constant.
‡ We prefer to introduce the arbitrary mass scaleµ explicitly.
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Inserting (4.9) in the functional integral we find, in the semiclassical approximation,

ψ(C) = exp
(−T V cl

) ∫
Du Dv

D−1∏
k=4

Dzk e−S(2)

. (4.12)

Taking into account (4.2) one finds that in the expansion of the static potential

V = κ−1V−1 + V0 + · · · (4.13)

the first term reproduces the classical ground-state energy, while the second one represents
the one-loop correction:

V0 = lim
T →∞

1

2T

(
Tr log

D̂0 − D̂1

µ2
+ (D − 4) Tr log

(
−∂2

τ + λ2∂2
η

λµ

))
(4.14)

where

D̂0 = −σ0∂
2
τ − λ2(σ0∂

2
η + 1

2ibσ2∂η + 1
2a2σ0) (4.15a)

D̂1 = λ2a2

2
σ3 (4.15b)

σk (k = 1, 2, 3) are Pauli matrices andσ0 = ( 1
0

0
1

)
. The second term in (4.13) has been

calculated [18] by means of analytic regularization. The result is

Tr log

(
−∂2

τ + λ2∂2
η

λµ

)
∼ −λπT

122
T → ∞. (4.16)

The leading term does not depend on the (arbitrary) mass scaleµ.
The spectrum of the operator† D̂ = D̂0 − D̂1 is unknown, so we assume that

Tr log
D̂0 − D̂1

µ2
= Tr log

D̂0

µ2
+ Tr log(1 − D̂−1/2

0 D̂1D̂−1/2
0 ) (4.17)

and treat the second term as perturbation. The spectrum ofD̂0 is positive provided

2 <
4π√

1 + 7a2
. (4.18)

Indeed

D̂0 = exp

(
− ibη

4
σ2

)
˜̂D0 exp

(
ibη

4
σ2

)
(4.19)

where

˜̂D0 = −σ0

(
∂2
τ + λ2

(
∂2
η + 1 + 7a2

16

))
. (4.20)

The spectrum of̃̂D0, and, therefore, that of̂D0, is positive if (4.18) is fulfilled. Taking into
account (4.18) and (4.19) one finds

F0 = Tr log
D̂0

µ2
= 2 Tr log

(−∂2
τ − λ2

(
∂2
η + 1

16(1 + 7a2)
)

µ2

)
. (4.21)

† Dirichlet boundary conditions are assumed.
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It can be calculated by the same method [18], although the result isµ-dependent, in contrast
to the ‘massless’ case (see equation (4.16)). Indeed, it can be supposed that

F0 = −2
∂

∂β
Tr

(
−∂2

τ + λ2(∂2
η + (π2/22)ρ2)

µ2

)−β ∣∣∣∣
β=0

= − ∂

∂β

2

0(β)

∫ ∞

0
dt tβ−1 Tr exp

(
t

µ2
∂2
τ

)
Tr exp

(
t
λ2

µ2

(
∂2
η + π2

22
ρ2

))∣∣∣∣
β=0

(4.22)

where the notation

ρ = 2
√

1 + 7a2

4π
(4.23)

is used. The operators∂2
τ and ∂2

η + q2 in (4.22) are considered on [0, T ] and [0, 2],
respectively. Taking into account the asymptotic

Tr exp

(
t

µ2
∂2
τ

)
∼ µT√

4πt

t

µ2T 2
→ 0 (4.24)

one obtains an asymptotic expression

F0 ∼ − µT√
π

∂

∂β

0(β − 1
2)

0(β)

(
µ2

λπ

)2β−1

Z

(
β − 1

2
, −ρ2

) ∣∣∣∣
β=0

(4.25)

whereZ(s, q) is a (generalized)ζ -function (its definition and properties are summarized in
the appendix). By using its expansion in the vicinity ofs = − 1

2 we obtain

Tr log
D̂0

µ2
∼ 2πλT

2

(
− 1

12
+

∞∑
n=1

(
(n2 − ρ2)1/2 − n + ρ2

2n

)
− ρ2

2
log

µ̃2

2πλ

)
T → ∞

(4.26)

whereµ̃ = µ exp(2 + γ ), γ being the Euler constant.
We are going to find the asymptotic at largeT of the second term

F1 = Tr log
(

1 − D̂−1/2
0 D̂1D̂−1/2

0

)
= −

∞∑
n=1

1

n
Tr

(D̂−1
0 D̂1

)n
(4.27)

in (4.17). The odd terms in the expansion (4.27) vanish due to the properties of the Pauli
matrices and one finds:

F1 = 1
2 Tr log

(
1 − Q−1

)
(4.28)

where the operator

Q = D̂−1
1 D̂0D̂−1

1 D̂0 = 4σ0

λ4a4

((
∂2
τ + λ2

(
∂2
η + a2

2

))2

+ λ4b2

4
∂2
η

)
(4.29)

is self-adjoint. Equation (4.28) can be rewritten as

F1 = 1
2 Tr (log(Q − 1) − logQ) (4.30)

and introducing the resolvent

R(z) = (Q − z)−1 (4.31)

one obtains

F1 = −1

2

∫ 1

0
dz Tr R(z) (4.32)
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providing the function

Tr R(z) = 2
∞∑

m=1

∞∑
n=1

(
4

λ4a4

(((πm

T

)2
+ λ2

((πn

2

)2
− a2

2

))2

− 1

4
λ4b2

(πn

2

)2
)

− z

)−1

(4.33)

is well defined forz ∈ [0, 1]. A straightforward calculation shows thatR(z) is well defined
and equation (4.32) can be used if

2 <
2π√

1 + 3a2
. (4.34)

We assume that (4.34) is fulfilled (it is easy to check that this condition is stronger than
(4.18)). Performing the sum onm in (4.33) we find the following expression for the leading
term at largeT :

Tr Ras(z) = λa4T

4

∞∑
n=1

(
a4z + b2 π2n2

22

)−1/2 ((
π2n2

22
− a2

2
− 1

2

(
a4z + b2 π2n2

22

)1/2)−1/2

−
(

π2n2

22
− a2

2
+ 1

2

(
a4z + b2 π2n2

22

)1/2)−1/2)
. (4.35)

Then we insert (4.35) in (4.32) and perform the integration. The result is

F1 ∼ πλT

2

∞∑
n=1

((
n2 −

(
b222

4π2
n2 + a424

4π4

)1/2

− a222

2π2

)1/2

−
(

n2 − b2

2π
n − a222

2π2

)1/2

+
(

n2 +
(

b222

4π2
n2 + a424

4π4

)1/2

− a222

2π2

)1/2

−
(

n2 + b2

2π
n − a222

2π2

)1/2)
T → ∞ . (4.36)

Inserting (4.26) and (4.36) in (4.17) and then in (4.14) we finally obtain

V0 = −λπ(D − 2)

242
− (1 + 7a2)λ2

32π
log

µ̃2

2λπ

+λπ

22

∞∑
n=1

(
2

((
n2 − 1 + 7a2

16

22

π2

)1/2

− n + 1 + 7a2

32n

22

π2

)

+
(

n2 −
(

b222

4π2
n2 + a424

4π4

)1/2

− a222

2π2

)1/2

−
(

n2 − b2

2π
n − a222

2π2

)1/2

+
(

n2 +
(

b222

4π2
n2 + a424

4π4

)1/2

− a222

2π2

)1/2

−
(

n2 + b2

2π
n − a222

2π2

)1/2)
. (4.37)

This expression has been derived under the assumption that (4.34) is satisfied. If
2 > 2π(1 + 3a2)−1/2 the static potential acquires a non-zero imaginary part indicating
an instability in the string. The only exception is the transversal string (a = 0). In that case
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F1 ≡ 0 and the stability condition is given by (4.18) instead of (4.34). In the caseb = 0 a
result is reproduced which has been obtained in a previous paper [14] by using a different
gauge-fixing condition.

In the limit of a vanishing topological term in the action, i.e.λ → 0 in (3.3), this
expression simplifies considerably. By inserting (3.19) in (4.36), we find

V0 = −π(D − 2)

24r
+ π(D − 2)(1 − c2)

242
λ2r − 8 − 7c2

32π
λ2r log

µ̃r

2π
+ o(λ2) λ → 0.

(4.38)

The first term reproduces the well known universal correction [19, 17]. The second
could be absorbed by a renormalization ofµ̃. The third term is alog correction and, in
contrast to the second, does not vanish even for the transversal string (c2 = 1).

5. Closed strings

Trying to evaluate the one-loop contribution to the energy of a closed static string we write
down an expression similar to (4.14). Zero boundary conditions have to be replaced by
periodic ones (with period 2πN ). The operator̂D0, equation (4.15a), decouples (because
a = 1, b = 0 for a closed static solution) and for the one-loop correction one obtains

1EN = lim
T →∞

1

2T

(
Tr log

(
−∂2

τ + λ2(∂2
η + 1)

µ2

)
+ Tr log

(
−∂2

τ + λ2∂2
η

µ2

)

+(D − 4) Tr log

(
−∂2

τ + λ2∂2
η

λµ

))
. (5.1)

However, the operator−∂2
η −1 (on [0, 2πN ], with periodic boundary conditions) possesses

the eigenvalues

εn = n2

N2
− 1 n = 0, 1, . . . (5.2)

which are negative forn < N . Therefore any closed static solution is unstable.

6. Conclusions

We have shown that the action including a topological term [6] admits the same constraint
algebra and residual symmetry (to the conformal gauge) as those for the ordinary bosonic
string. Here the Virasoro algebra also appears twice; first as a constraint algebra and
second as the residual symmetry of the action in conformal gauge. This residual symmetry
algebra can admit an extension toW∞ algebra. The static potential (in the semiclassical
approximation) was found for an open string in that specific background. However, the
solutions of the equations of motions are changed, hence the ground-state energy also is
changed. For example, only waves with definite chirality are admissible. As a consequence
the structure of the one-loop correction is rather complicated: it includes a log term in
particular. The critical distance depends on the orientation of the string. In the limit of
vanishing topological term the correction coincides with the well known universal one [18].
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Appendix

The generalizedζ -function

Z(s, q) =
∞∑

n=1

(n2 + q)−s Res > 1
2 | arg(1 + q)| < π (A1)

which can also be represented as

Z(s, q) = 1

0(s)

∫ ∞

0
dt t s−1

∞∑
n=1

exp(−t (n2 + q)) Res > 1
2 Re(1 + q) > 0 (A2)

admits a continuation in the wholes-plane, except for the points

s = 1
2 − k k = 1, 2, . . . (A3)

where it has poles. Indeed, by expansion in powers ofq,

Z(s, q) =
∞∑

k=0

0(1 − s)ζ(2s + 2k)

k!0(1 − s − k)
qk

=
∞∑

k=0

0(k + s)ζ(2s + 2k)

k!0(s)
(−q)k. (A4)

A convenient representation for our purposes is

Z(s, q) = ζ(2s) − sqζ(2s + 2) +
∞∑

n=1

((
n2 + q

)−s − n−2s + sqn−2s−2
)

Res > − 3
2 | arg(1 + q)| < π. (A5)
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